SUPPLY CHAIN IMPACT ACCOUNTS FOR MORE THAN 80% OF GHG EMISSIONS

(Source: International Transport Forum Outlook 2019)

CountEmissions EU GHG Emissions Calculation

The European Chemical Industry Council, AISBL – Rue Belliard, 40 - 1040 Brussels – Belgium Transparency Register n°64879142323-90

CountEmissionsEU

Standard/methodology	Transport modes/segments			
GHG protocol	All modes	Passengers & freight		
EN 16258	All modes	Passengers & freight		
ISO 14083	All modes	Passengers & freight		
PEF	All modes	Passengers & freight		
French transport code (Article L. 1431-3)	All modes	Passengers & freight		
Parcel Delivery Environmental Footprint ⁷⁶	All modes	Parcel		
GLEC	All modes	Freight		
SmartWay	All modes	Freight		
Topsector	All modes	Freight		
Clean Cargo Working Group	Maritime	Freight		
EU MRV	Maritime	Freight		
IMO DCS	Maritime	Freight		
CORSIA	Aviation	Passengers & freight		
ICAO/IATA RP1678	Aviation	Freight		
IATA	Aviation	Passengers		
EU ETS aviation	Aviation	Passengers & freight		

Source: Ecorys and CE Delft (2023), Impact assessment support study

CountEmissionsEU

Disclosed GHG data (SMEs)

CountEmissionsEU

Mobility and Transport

COMMISSIONER KEYWORDS

CALCULATION OF EMISSIONS

GREEN CREDENTIALS ONLINE

METHOD BEHIND THE CALCULATOR

DATA ACCURACY

CALCULATION FORMULA

STANDARDIZED METHODOLOGY/FORMULA ISO/CEN STANDARD

Source : Ecorys and CE Delft (2023), Impact assessment support study

General Business

Revision of the Countemissions EU Regulation EXPLANATORY MEMORANDUM

What we propose				SUSTAIN	ABLE & SMA	RT
Binding opt-in: only fo those that calculate and disclose GHG emissions data of transport services	CEN ISO 14 method for GHG em transport	083 as the calculating issions of t services	Input dat priority data; de manager	ta treatment: for primary fault values d by the EEA	Harmonise for GHG em disclose mai	ed metrics issions data d on the rket
R commu trar	ules on inication and isparency	Use of calculati	ertified on tools	Conformity (verificati emission calculation SMEs et	r assessment on) of GHG s data and h processes: kempted.	

	Proper method for o one of the key aspec framework	alculating GHG emissions is ct for the harmonised Union	e comparable and accurate lata, by following a single set cal steps	
EN ISO standard 14083: the reference methodol emissions of transport s	2023 was chosen to be logy fo calculating GHG ervices	Well-to-wheel basis which include emissions stemming from energy vehicle use during transport and h	es GHG provision and nub operations	Secondary data by default values and modelled data. Default values and modelled data provided by a reliable source
Different ypes of input including primary and secondary data can be used. Primary data should be prioritised. Secondary data use should be allowed under clear conditions		De Core EU database of default v emission intensity to improve data. Glven sectorial, national specifities of default values ac databases and datasets opera should be allowed but under o level	values for GHG comparability of l and regional cross EU, othe relevant ated by third parties quality check at EU	Central EU database of GHG factors of energy carriers as well check on third party (EEA)

General Business

CountEmissionsEU Follow up on Legislative process

Sharing

Rapporteur(s)

Schedule

Actions

Metadata

In the spotlight:

Status:

Type:

CWP:

General Business

meet climate ambitions Press Release 14 July 2021

Sustainability Science

Dow's Perspective on ECTA Emission Guideline

Dow Sustainability Science

ECTA Seminar September 2023

This Is Dow

Every answer starts with asking the right question.

At Dow, these questions and the pursuit of solutions for the world's toughest challenges inspire us to collaborate and use our materials science expertise to create innovative solutions that transform our world and deliver a sustainable future.

Materials Science Solutions to Sustainably Address Global Needs

Key Growth Drivers

- Circular and renewable
- Societal food waste reduction
- Downgauging / Lightweighting
- Decarbonization of electricity
- Building efficiency
- Longevity
- Connectivity
- Safer materials
- High-efficiency end-products
- Circular and renewable
- Electrification and autonomous
- Lightweighting
- Circular and renewable
- Reduced noise, vibration

Elastomers, fluids, composites and silicones enabling wind and solar power

Recycling of end-oflife consumer products into raw materials for re-use

Silicones, urethanes, and acrylics enable weight reduction and improve fuel efficiency

Dow Participation Highlights

Materials that enhance the efficiency of highperf. buildings

Battery assembly materials for safe and reliable EV & AV designs

Channeling Dow's materials science expertise as we collaborate and innovate with customers and partners to create solutions that positively impact the world

Global Scale, Local Reach and Collaborative Innovation

Industry Leader in Environmental Sustainability

DOW SUPPLY CHAIN EMISSIONS

Carbon Accounting & Logistics Transportation

Scope 3 Emissions are 70% of Dow's Total Emissions

DOW SUPPLY CHAIN ACTIONS

Governance

- Global governance with regional autonomy
- Collaborative both internal & external
- Business aligned, effective for customers

Internal Awareness

- Optimize Operations
- Sourcing Engagement

Execution

Research

- Strategic technology
- LSP collaboration
- Associations for Climate Action

Dow

SQAS Measurement and Management of greenhouse gas (GHG) emissions

The European Chemical Industry Council, AISBL – Rue Belliard, 40 - 1040 Brussels – Belgium Transparency Register n°64879142323-90

SQAS and GHG Emissions Calculation

SQAS and GHG Emissions Calculation

Θ	SQAS version 2022	76%
÷	1. Management System and Responsibility	80%
ŧ	2. Risk management	76%
÷	3. Human Resources	81%
ŧ	4. On/Off Site Emergency Preparedness and Response	83%
÷	5. Performance Analysis and Management Review	75%
ŧ	6. Management of Subcontractors	71%
÷	7. Equipment: Specification, Inspection, Maintenance, and Calibration	83%
÷	8. Behaviour Based Safety (BBS or equivalent programme)	64%
÷	9. Measurement and Management of transport greenhouse gas (GHG) emissions	49%
ŧ	10. Security	78%
ŧ	11. Control of operations	82%
÷	12. Specific types of Transport Services and their activities	76%
÷	13. Site Inspection and Site operations	86%
÷	14. Handling practices of Food, Food contact Materials and Feed Products	94%

SQAS and GHG Emissions Calculation

Ξ	9. Measurement and Management of transport greenhouse gas (GHG) emissions	55%
E	9.1. Scope 1: Emission measurement of vehicles that are owned or controlled by the company.	74%
	9.2. Scope 2: Emissions from electricity	78%
1	9.3. Scope 3	47%
1	I 9.4. Calculation of Total emissions (Scope 1, 2 and 3)	41%
E	9.5. Calculation of Tonnes-km	53%
E	9.6. Calculation of emission intensity	38%
E	9.7. Consolidating and reporting emissions	27%
E	9.8. Training	78%
E	9.9. Reducing emissions	46%
	□ 9.3. Scope 3	47%
	9.3.1. Fully Integrated subcontractors and Non-Integrated subcontractors	46%
	9.3.2. Intermodal/ Multimodal	51%
	9.3.3. Tank cleaning stations	40%
	9.3.4. Subcontracted storing/handling of goods	9%
	9.3.5. Production and Distribution of fuels burned in Scope 1	60%
	9.3.6. Calculation of Scope 3 emissions	39%
	9.4. Calculation of Total emissions (Scope 1, 2 and 3)	41%
	9.4.1. Did the company calculate the Total emissions during last year by addition of Scope 1, 2 and 3 emissions?	41%
	9.5. Calculation of Tonnes-km	53%
	9.5.1. Does the company know the tonnes of product transported and Kilometers driven (both laden and empty) associated with each category specified in 9.1.3.?	61%
•	 9.5.2. Did the company calculate the tonnes-Kilometers (tkm) during the last year by transport order and by category with the formula?Σ tkm by transport category = (ton shipment 1 x km shipment 1) + (ton shipment 2 x km shipment 2) + + (ton shipment n x km shipment n) 	46%

CEFIC/ECTA Guidelines Emissions calculation

The European Chemical Industry Council, AISBL – Rue Belliard, 40 - 1040 Brussels – Belgium Transparency Register n°64879142323-90

Scope & Intent of the ECTA Emission Guideline

TABLE OF CONTENTS:

- 1. Introduction
- 2. Objectives & Scope of Guideline
- Development of carbon accounting and carbon reduction strategy for logistics in the chemical industry
- 4. Data sharing in carbon accounting
- 5. Measuring of transport emissions
 - a. Examples by mode
 - b. Examples by complexity

Organizational Carbon Accounting

- Hierarchy of source data
- Action within company organization
 - Scope 1 & 2 emissions
 - > Tonnekm calculation
 - Convert liters of fuel to kg of CO2e

Calculation of WTT (Well to Wheel), TTW (Tank to Wheel), and WTW (Well to Wheel) carbon emissions based on Diesel, 5% biodiesel blend (B5) consumption.

A truck requires around 48 liters of diesel for a journey in 2021 from Strasbourg to Nancy.

The **WTT emission** is calculated using the data in table 32 of the GLEC framework (2019): 48 | x 0.63 kg/l fuel = 30.24 kg CO2e

The **TTW emission** is calculated using the data in table 32 of the GLEC framework (2019): 48 | x 2.54 kg/l fuel = 121.92 kg CO2e

The **WTW emission** is calculated using the data in table 32 of the GLEC framework (2019): 48 l x 3.17 kg/l fuel = 152.16 kg CO2e

The GLEC Framework includes emissions from the full fuel life cycle, known as well-to-wheel (WTW) emission factors. WTW factors are comprised of two separate sub-categories: well-to-tank (WTT) and tank-towheel (TTW).

1) 2019 GLEC Framework, page 100, Table 32 European Values

FTL example

A warehouse delivers a full truckload (FTL) of 22MT to a customer location 27 km away. The truck consumed 8.1 liters for Diesel, 5% biodiesel blend (B5).

The **WTW emission** is calculated using the data in table 32 of the GLEC framework (2019): 8.1 | x 3.17 kg/l fuel = 25.677 kg CO2e

The **tonnekm** is calculated as follows: 22 MT x 27 km = 594 tonnekm

The **carbon intensity** is calculated as follows: 25.677 grammes CO2e / 594 tonnekm = 43.23 g/tonnekm

1) 2019 GLEC Framework, page 100, Table 32 European Values

Carbon accounting alongside value offering

- Linking Transport Chain Elements (TCE)
- Subcontractors
 - Multistop shipments
 - Secondary data ingestion
 - Empty running

Complex

Empty Running calculation

All road distance calculation should include empty running transport movements.

Trucking company A has a day plan of 2 goods deliveries for 2 customers. The truck departs empty from a depot located in Bar Sur Seine to the loading facility in Troyes. From Troyes the truck transport the goods to the delivery point in Nancy and completes the first goods delivery.

For the second customer the goods are picked up from a loading facility 15 km from the last delivery point. The last delivery is to the delivery point located in Vitry.

The final trip of the day consists out of returning the truck to the original depot.

The total distance traveled of the truck is 183.3 km, the laden distance is 141 km. The empty trip factor is 23%.

Whilst only the direct distance can be reported, for the carbon emission accounting the empty trips should be included.

<u>Table 3</u>

						Allocation	based on
Tuin	Payload	Distance	Empty Distance	Laden Distance	Customer	Weight	Transport Service
Inp	MT	km	km	km		%	%
1	-	4.3	4.3				
2	18.00	73		73	Customor 1	46%	52%
3	-	15.8	15.8		Customer 1		
4	21.00	68		68	Customor 2	54%	400/
5	-	22.2	22.2		Customer 2		4070
Total	39.00	183.3	42.3	141		100%	100%

Carbon Accounting of Transport Chain including Subcontracted operations

For a customer, a bulk liquid storage provider located in France has received a service request to drum 22MT of product and deliver to a delivery location 27 km away.

The storage provider's drumming installation is electric powered and connected to the national grid and measured a total consumption of 6.4 kWh.

French national grid has an average carbon intensity of 84g CO2/kWh.

The truck transport is subcontracted to another company. Should the subcontractor not have emission data available, secondary data could be used. Fortunately the subcontractor has detailed carbon accounting. The truck consumed 8.1 liters of Diesel, 5% biodiesel blend (B5) to deliver the order to the delivery location.

Drumming: 6.4 kWh x 84 g/kWh = 0.537 kg CO2e

The **WTW emission** is calculated using the data in table 32 of the GLEC framework (2019): 8.1 | x 3.17 kg/l fuel = 25.677 kg CO2e

The **tonnekm** is calculated as follows: 22 MT x 27 km = 594 tonnekm

The **carbon intensity of the full transport chain** is calculated as follows: [25.677 + 0.537 grammes CO2e] / 594 tonnekm = 44.13 g/tonnekm

Through data-sharing and detailed carbon accounting using primary data sources, an accurate view of the carbon emission is established.

Advanced

Industry organized action

- Transport operators & Logistics hubs
 - Multi-modal accounting with primary data-based carbon intensity
 - Action through reduction opportunities

Intermodal example

A container delivery with 21 MT of goods is delivered using an intermodal solution to a customer. The transport flow is listed in table 4 and consists out of multiple transport chain elements.

Table 4

									Allocation based on
	Tuin	Trip description	Distance	Transported Weight	Transport Service	Diesel Consumption	Electricity Consumption	WTW Emissions	Distance
mp	Inp	Trip description	km	kg	tkm	liters	kWh	kg CO2e	%
	1	Container pick up	16		336.00	4.80		15.22	2%
	2	Site to rail station	43		903.00	12.90		40.89	6%
	3	Origin rail station to destination station	580	21,000.00	12,180.00		609.00	211.93	84%
	4	Rail station to Customer	23		483.00	6.90		21.87	3%
	5	Container return to depot	25		525.00	7.50		23.78	4%
		Total	687.00	21,000.00	14,091.00	32.10	609.00	313.69	98%

Climate embedded Eco-system

- Primary data-based accounting
- End to End across industries
- Enable Climate Action Associations

ECTA Guideline: SQAS gaps prioritized

Supply Chain Complexity:

- From in-house to partners
- From service offering to climate action

Avanced

9.5.2 Did the company calculate the tkm during the last year by transport order and by category - **46**% Expert

9.4.1 Did the company calculate the Total emissions during last year by addition of Scope 1, 2 and 3 emissions - 41%

Basic

9.5 Calculation of tkm - 53%9.6 Calculation of emission intensity - 38%

Complex

9.3.4 Subcontracted storing/handling of goods - 9%

Carbon accounting:

- Emission intensity from proxy to carrier specific
- Data from modeled to primary data

The EU Chemical Industry Transition Pathway

#TransitionPathway

Support our transformation journey >

https://transition-pathway.cefic.org/

Notes and references